If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-16+y=0
a = 2; b = 1; c = -16;
Δ = b2-4ac
Δ = 12-4·2·(-16)
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{129}}{2*2}=\frac{-1-\sqrt{129}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{129}}{2*2}=\frac{-1+\sqrt{129}}{4} $
| 6x-5=8+6 | | 9x=80−7x | | 5x+83(x=2) | | c^2+10c+39=0 | | 2(x-3)=3(x+1)-4x | | 3x²-4x=256 | | X3+x2=-3x-7 | | 4(4x-2)-9=3-(x+5) | | X^3+x^2=-3x-7 | | X^3+x^2-3x-7=0 | | (x+2)x+1=36 | | C^2+10c=39 | | x-5x-x+4x=2-4-1 | | z|10-8=3 | | 2(8s+9)-10s=2(3s+6)-16 | | 7^2n/7^n=7^4 | | 16^-x=0.5 | | y^2+6y+15=3-7y | | -16x^2+30x-54=0 | | 2x4-3x3+x2-3x+2=0 | | X+3x+3=2x | | 24^2+55x-24=0 | | (2-x)(x-1)(4x-5)=0 | | 6x+12=6×+6×=6×(+) | | 2^x+3^x=50 | | 12p-1=6p+10 | | 0=2(x^2+7x-44) | | 8n^2+4n+12=8 | | E=3a+3-2a²+2a | | (2/3)x-3=11 | | 2/x=15/7 | | n/2(2(40000)+(n-1)(3500))=n(2(10000)+(n-1)(2000)) |